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Introduction 1

Part I

Introduction

1.1 Half-metals and Spintronics

In 1983 a new class of materials, the half-metals, was predicted in which electrons at

the Fermi level are fully spin polarised (1). An example of this is the band structure

of NiMnSb shown in figure 1. Bands of the majority spin state cross the Fermi level

whilst those of the minority spin do not. The remarkable consequence of this is

that NiMnSb conducts majority-spin electrons while acting as a semiconductor to

minority-spin electrons - hence the name ’half-metal’. Very few materials display

Figure 1: Majority and minority band structures of NiMnSb showing 100% polari-
sation of density of states at the Fermi-level

half-metallic behaviour although some notable examples are CrO2 (2), NiMnSb (1)

and similar structures such as PtMnSb (3).

Interest in half-metals has long been associated with the rapidly developing field

of spin-electronics (spintronics). Spintronics exploits the spin of an electron in con-

trolling its flow through some device (4). One of the many advantages that such

devices have over those of conventional electronics is that magnetic rather than elec-

tric fields can be used to determine electron movement, and this can dramatically

reduce switching times. Current spintronic devices include non-volatile random ac-

cess memory and disk-drive technology. Future applications could include quantum
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computing and novel logic circuitry. Intricate to the working of a spintronic device

is the ability to produce and respond to a spin-polarised current. The complete spin

polarisation of half-metals at the Fermi level therefore makes them potentially very

useful to the spintronics industry.

A spintronic device that could be vastly improved by the use of half-metals is

the spin-valve. Crude spin-valves already exist, and an example of their use is

the hard-drive technology first introduced by IBM in 1997. The spin valve they

employed (figure 2) consists of two ferromagentic materials, one pinned in a certain

magnetic orientation and the other free. Because ferromagnets display a degree

of spin polarisation at the Fermi level, a current flowing out of the free layer and

into the pinned layer will also be spin polarised. If both layers are magnetically

aligned then there will be better conduction than when the layers are anti-aligned.

The change in resistance between the two cases (of about 8% in working devices)

can be used to determine the magnetic environment experienced by the free layer

and in this fashion data can be read from a spinning hard drive. The excitement

surrounding half-metals is that if the ferromagnetic layers could be replaced by half-

metals (figure 4), then in principle a change in resistivity of 100% could be realised.

This huge response would allow magnetic domains to be made smaller and spun

faster, enabling greater data storage densities and faster access speeds.

1.2 Half-metal / Semiconductor interfaces

Spintronic devices require the injection of spin polarised currents across interfaces,

particularly those interfaces made with semiconductors. At an interface formed by

a half-metal the loss of translational symmetry may sufficiently disrupt the band

structure to destroy the Fermi level spin polarisation. This means that on crossing

this interface, a spin polarised current would loose its coherence due to spin flip

scattering. This consideration is one major problem preventing the widespread use

of half-metals in spintronic applications and for this reason it is necessary to study

the interfaces made by half-metals.

A particularly relevant interface is that made between NiMnSb and the semicon-

ductor InP. NiMnSb is the prototypical half-metal with a large body of experimen-

tal (5) and theoretical (6; 1) work documenting its properties and it also has a high
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Figure 2: A sketch of density of states (DOS) against energy. A crude spin-valve
of two ferromagnetic layers, one pinned and one free. The density of states at the
Fermi-level is greater for the majority spin species and therefore aligned ferromagnets
conduct better than when anti-aligned.

curie temperature of 760 K (7). InP is commonly used in the opto-electronic indus-

try and has a lattice constant which differs to that of NiMnSb by only 1%. This

means that at the interface there will be minimal distortion from bulk geometries

and this is very convenient for modelling. Specifically, the {100} interface is chosen

because the {100} surface is the only NiMnSb surface that can be experimentally

characterised with any degree of certainty (8).

This thesis presents work towards an understanding of the interface between

NiMnSb and InP by use of density-functional theory. It has been claimed in previous

theoretical studies that the NiMnSb / InP {100} interface is not half-metallic (9).

However, this work uses a very crude model where two materials are simply joined

in their bulk geometries and the interface subsequently relaxed. It may be that a

more accurate description of the interface yields a different interface structure that

retains the half-metallicy of bulk NiMnSb.
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Figure 3: The use of a spin-valve in hard drive technology. The free layer aligns
with the magnetic domain directly underneath it. By measuring the resistivity of the
spin-valve, the state of the magnetic domain can be read.
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Figure 4: A sketch of density of states (DOS) against energy. An ideal half-metal
spin-valve with 100% change in resistivity.

In constructing a more accurate model, the optimum geometry of the InP{100}

surface is found and then NiMnSb is built onto this, layer by layer. At every stage

of this process the structure is allowed to relax to its optimum state. In this thesis

a model for the InP{100} surface is developed in preparation for further work on
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the NiMnSb / InP {100} interface.
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Part II

Theory and Methodology

2 Density Functional Theory

The beginnings of density-functional theory are in the papers of Thomas and Fermi

in the 1920s, but only during the 1960s in the work of Kohn Sham and Hohen-

berg (10; 11) did the theory become complete and accurate. Over the 1990s density-

functional theory took centre stage in computational chemistry and it is now the

method of choice for a huge range of calculations because of its excellent accuracy

and computational economy.

The essence of density-functional theory is to redefine the many-body problem

of interacting electrons in the form of a single particle moving in an effective local

potential. Although the form of this potential is unknown, and likely to remain

forever unknown, significant ground can be covered by making approximations to

it. The only justification for using these approximations is the quality of results

that it produces. As such, density-functional theory is limited to only ever being

semi-empirical in nature. A full derivation and discussion of a working theory can

be found in (12; 13). The key steps are summarised below.

2.1 The Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems form the basis of density-functional theory by relat-

ing the energy of a system to its electron density. There are two theorems, or more

exactly a single theorem and a corollary.

Firstly, the Hamiltonian is written within the Born-Oppenheimer approximation

in terms of the electron kinetic energy T , the electron-electron interaction term Vee

and the external potential Vext,

H = T + Vee + Vext = F + Vext
a (1)

where F = T +Vee and Vext =
∫

drρ(r)vext(r). Note that all ground state properties

of the system are dependent on only the external potential Vext, and the number
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of electrons N. That the form of F is independent of both makes it universal for

all systems and this fact greatly contributes to the wide applicability of density-

functional theory. The first theorem states,

Theorem 1 There is a one-to-one correspondence between the ground-state electron

density of an N-electron system and the external potential acting upon it.

This is proved by contradiction. Assume there are two potentials v1(r) and v2(r)

with associated Hamiltonians Ĥ1 and Ĥ2 and ground state wave functions ψ1 and

ψ2 with energies E1 and E2. If v1 and v2 result in the same ground state density

ρ(r) then by the variational principle

E1 = 〈ψ1|Ĥ1|ψ1〉 ≤ 〈ψ2|Ĥ1|ψ2〉 = 〈ψ2|Ĥ2|ψ2〉 − 〈ψ2|(Ĥ1 − Ĥ2)|ψ2〉 (2)

so

E1 ≤ E2 +
∫

dr ρ(r) [v1(r) − v2(r)] (3)

Running the argument in the reverse order gives

E2 ≤ E1 +
∫

dr ρ(r) [v2(r) − v1(r)] (4)

which contradicts equation 3 unless v1 = v2.

That the density ρ determines vext means it must also define all ground state

properties including the wave function (since ρ also trivially defines the number of

electrons N). Thus the ground state energy and all its contributing terms can be

written as functionals of ρ,

E [ρ] = T [ρ] + Vee [ρ] + Vext [ρ] = F [ρ] +
∫

drρ(r)vext(r) (5)

This is the very heart of density functional theory; the highly dimensional wave

function has been replaced by the far simpler electron density. Of course, the simpli-

fication to three dimensions means having to guess the form of the very complicated

functionals of equation 5. This is discussed further in section 2.3.

All practical calculations depend on the second Hohenberg-Kohn theorem, often

called the density-functional theorem,

Theorem 2 For a trial density ˜ρ(r) such that ˜ρ(r) ≤ 0 and
∫

dr ˜ρ(r) = N ,

E0 [ρ] ≤ E [ρ̃]
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where E0 [ρ] is the exact ground state energy produced by the exact density ρ.

This follows immediately from the first theorem which showed that a density ρ̃

must determine its own ground state wave function Ψ̃. Thus the minimisation of

the energy with respect to the density ρ is equivalent to the normal variational

minimisation with regard to the wave function. Thus, assuming we have a good

functional representation for E[ρ], we can find the equilibrium configuration of a

system by minimisation of the total energy with respect to the density. This must

be done subject to the constraint

∫

dr ρ(r) = N (6)

and so we introduce the Lagrange multiplier µ b and find the stationary points of

the expression

δ

δρ(r)

{

E [ρ] − µ

[
∫

dr ρ(r) −N

]}

= 0 (7)

which, by the calculus of variations, gives the Euler-Lagrange equation

µ =
δE[ρ]

δρ(r)
= vext(r) +

δF [ρ]

δρ(r)
(8)

This equation is exact, but the form of F [ρ] remains unknown. In the treatment by

Kohn and Sham this difficulty is dealt with such that the variational method can

be pursued.

2.2 The Kohn-Sham equations

Kohn and Sham choose first to represent the electron density ρ by a set of wholly

fictitious non-interacting single electron orbitals,c

ρ(r) =
N

∑

i

|ψi(r)|
2 (9)

where the ψi are necessarily orthonormal. Secondly, they split F [ρ] into three parts,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ] (10)

bFrom equation 7 it is evident that µ is the change in energy with respect to change in the
number of electrons - i.e. the chemical potential.

cIt may seem counterintuitive that we re-introduce wave functions after working so hard to
dispense with them and their complexity. However, this considerable loss of simplicity is worth
sacrificing for the excellent method of treating the kinetic energy that it allows.



9

where Ts is the kinetic energy of the non-interacting orbitals

Ts =
N

∑

i

〈

ψi| −
1

2
∇2|ψi

〉

(11)

and J [ρ] is the classical coulomb repulsion part of Vee

J [ρ] =
∫ ∫

dr1 dr2

ρ(r1)ρ(r2)

|r1 − r2|
(12)

and the exchange-correlation energy Exc[ρ] is defined to contain everything else

necessary to make equation 10 an equality,

Exc ≡ T [ρ] − Ts[ρ] + Vee[ρ] − J [ρ] (13)

As a result of this very clever formulation, only Exc is unknown. Moreover Exc

is presumably small, being only the nonclassical part of Vee[ρ] and the difference

between T and Ts.
d The Euler-Lagrange equation (equation 8) now becomes

µ = veff(r) +
δTs[ρ]

δρ(r)
(14)

where the veff is the Kohn-Sham effective potential

veff(r) = vext(r) +
δJ [ρ]

δρ(r)
+
δExc[ρ]

δρ(r)
= vext(r) +

∫

dr2

ρ(r2)

|r1 − r2|
+ vxc(r) (15)

where vxc is the exchange-correlation potential, given by

vxc(r) =
δExc[ρ]

δρ(r)
(16)

Equation 14 is exactly the result that would be derived for a system of elec-

trons that were genuinely noninteracting and moving in an external potential veff .

Therefore, simply solving the N one-electron equations

[

−
1

2
∇2 + veff (r)

]

ψi = εiψi (17)

gives the density ρ(r) from equation 9. Equations 17 are the much celebrated Kohn-

Sham equations.e These equations are exact in principle, and yet they are simpler

than the Hartree-Fock equations because veff(r) is a local potential, depending only

on r at a single point in space. However, the value at this point is dependent upon

dExc also contains a correction for the unphysical interaction of an electron with itself that
results from the definition of the coulomb potential, J [ρ]. This does not occur in regular quantum
chemistry where the self-interaction terms of the exchange and coulomb terms cancel.

eAlternatively the Kohn-Sham equations may be derived by minimising the total energy with
the standard variational procedure on the orbitals ψi, subject to the constraint

∫

dr ρ(r) = N .
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ρ (equation 15) over all space (in some difficult and inaccessible way) and so these

equations must be solved iteratively until self-consistency is achieved. When this

criteria is met the energy can be computed directly from either

E[ρ] =
∫

dr ρ(r)vext(r) + Ts[ρ] + J [ρ] + Exc[ρ] (18)

or

E =
N

∑

i

εi −
1

2

∫

dr1dr2

ρ(r1)ρ(r1)

|r1 − r2|
+ Exc[ρ] −

∫

dr vxc(r)ρ(r) (19)

2.3 The Exchange-correlation functional

The Kohn-Sham formalism allows an exact treatment for the majority of the elec-

tronic energy, with all the remaining unknowns collected into the exchange correla-

tion functional Exc (equation 13). The accuracy of this approach depends entirely

on the quality of the chosen approximation to Exc, but there exists no systematic

way to improve upon this. The only exception is the uniform electron gas for which

contributions to the exchange correlation energy can be considered accurately.

2.3.1 The Uniform electron gas and Local density approximation

In the uniform electron gas a uniform spread of positive charge neutralises N elec-

trons which are delocalised over a volume V where N → ∞ and V → ∞ with the

electron density ρ remaining finite. Within such a model the total energy depends

only on the kinetic energy Ts and the exchange-correlation energy Exc.
f Moreover

Exc can be split into an exchange and a correlation term Ex and Ec

E[ρ] = Ts[ρ] + Exc[ρ] = Ts[ρ] + Ex[ρ] + Ec[ρ] (20)

Of these, it is possible to derive analytically the kinetic energy Ts and the exchange

energy Ex. There is no explicit expression known for Ec, but it can be determined

numerically by subtracting Ts and Ex from the total energy calculated by quantum

Monte Carlo simulations. Analytic forms for Ec have been suggested based on

numerical calculations over a range of electron densities.

fThe external potential term vanishes due to the neutrality of the gas.
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In the Local-density approximation (LDA) the exchange correlation energy for

the whole system is given by summing the uniform electron gas result over infinites-

imal portions of a nonunifrom density.g

ELDA
xc [ρ] =

∫

dr ρ(r)εxc (ρ(r)) (21)

where εxc(ρ(r)) is exchange-correlation energy per particle for a uniform electron gas

of density ρ. This is easily extended to an unrestricted version for spin densities ρα

and ρβ,

ELDA
xc [ρα, ρβ] =

∫

dr ρ(r)ε (ρα, ρβ) (22)

2.3.2 The Generalised Gradient Approximation

The local density approximation naturally works well for systems that approximate

a uniform-electron gas, systems with slowly varying densities as often found in solid-

state physics. However, it remains totally inadequate in modelling atoms, molecules

and surfaces where large gradients exist in ρ. The logical step in extending the

local density approximation to such cases is to include the gradient of the density.

∇ρ h This correction was first made by Becke in 1988 and was responsible for the

general acceptance of density functional theory as a valuable tool in computational

chemistry. Functionals of this kind are collectively known as generalised gradient

approximations (GGA) and are generically written,i

EGGA
xc [ρ] =

∫

dr f(ρ,∇ρ) (23)

A simple extension gives spin sensitive generalised gradient functionals (GGS),

EGGS
xc [ρα, ρβ] =

∫

dr f(ρα, ρβ,∇ρα,∇ρβ) (24)

The physics underlying the phenomenal success of these functionals remains as

mysterious as the form of the exact exchange-correlation functional. The use of

these functionals remain solely justified a posteriori by their success.

gNote ε(ρ(r)) and ε(ρα(r), ρβ(r)) are both are functions, rather than functionals, of ρ.
hIncluding ∇ρ in the functional can be viewed as introducing higher order terms into a Taylor

expansion of the density ρ.
iMore specifically, GGA functionals are those functionals containing ∇ρ which also impose

certain constraints on the form of the exchange-correlation hole.
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2.4 The meaning of the Kohn-Sham orbitals and eigenvalues

One-electron eigenstates and eigenvalues were introduced by Kohn and Sham solely

as a theoretical construct required to solve the many-body problem. From equa-

tion 19 it is evident that for weakly correlated materials, where the coulomb and

exchange-correlation energies are small, the Kohn-Sham eigenvalues εi are a good

approximation to the single-particle terms. It can also be shown that, given an exact

Exc, the energy of the highest occupied eigenstate εmax is exactly the negative of

the ionisation energy. However, until recently no physical significance was attached

to the Kohn-Sham orbitals beyond the fact that
∑

i |ψi|
2 = ρ. Lately however,

the interpretative power of these orbitals has been used in rationalising chemical

phenomena (14). This is justified by noting that because the Kohn-Sham orbitals

return the exact ground state density and fully incoroporate all non-classical effects

they are, in some sense, more physical than the Hartree-Fock orbitals of regular

quantum chemistry. Although the single particle Kohn-Sham orbitals may used in

qualitative molecular-orbital considerations, the true many-electron wave function

remains unattainable in density-functional theory.

3 Implementing Density-functional theory

The success of density functional theory in first-principle simulation is largely at-

tributable to the phenomenal computational efficiency achievable in its implemen-

tation. One such method, the plane-wave pseudopotential method (PWP) (15),

stands high above other ab initio techniques in terms of the complexity of systems

that can be handled. The PWP method functions within the Born-Oppenheimer

approximation and further relies upon,

• Pseudopotentials to model electron-ion interactions

• Iterative minimisation to find the ground state

• Supercells to model aperiodic systems

• Plane waves as a basis set

Iterative methods are used to find the ground state, replacing the conventional

matrix diagonalisation of traditional self-consistent field quantum chemistry. This
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is because the cost of matrix diagonalisation scales as the third power of the number

of plane-wave basis states, the memory requirement increases as the square j and

all electronic-state eigenvalues are calculated even though the total energy depends

only on the lowest occupied states. Furthermore, considerable effort is invested in

computing the eigenvalues to great accuracy, even when the system is far from self-

consistency. Iterative methods can avoid many of these costs by instead optimising

the parameters of a solution to reach a minimum. Since the Kohn-Sham equations

obey the variational principle the end result should be independent of the technique

used to get there, provided the iterative method finds the global minimum.

3.1 Plane wave basis set

A plane wave basis set is the natural choice to describe the wave functions of solid

state systems. Imposing Born-van-Karmen boundary conditions on an infinite ex-

tent of bulk material allows the wave functions to be decomposed into the Bloch

form (16),

ψn,k(r) = un,k(r).e
ik.r (25)

where un,k(r+R) = un,k(r) for any lattice vector R. Different solutions are indexed

by n at a fixed wave vector k which is chosen to lie in the first Brillouin zone. The

cell-periodic part un,k(r) can be expanded using a discrete set of plane waves whose

wave vectors are reciprocal lattice vectors of the crystal,

un,k(r) =
∑

G

ũn
Ge

iG.r (26)

where G are defined by G.R = 2πm for any integer m. Therefore, each electronic

wave function is written as

ψn,k(r) =
∑

G

ũn
Ge

i(k+G).r (27)

Substituting for ψn(r) into the Kohn-Sham equations (17) and integrating over

r gives the secular equations,

∑

G′

[

h̄2

2m
(k + G)2

δGG′ + ṽeff,(G−G′)

]

ũn
k+G = εnũ

n
k+G′ (28)

jFurthermore, roughly 100 plane waves per atom are required for the calculation.
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where ṽeff,G are the Fourier components of veff expanded over reciprocal lattice

vectors, veff =
∑

G ṽeff,G.e
iG.r. Solution of the secular equations are by diagonali-

sation of the Hamiltonian matrix whose elements Hk+G,k+G′ are contained within the

square brackets of equation 28. The size of this matrix and the accuracy of the plane

wave expansion of ψn,k(r) is determined by the cutoff energy Ec = h̄2

2m
(k + Gc)

2

where Gc is the wave vector at which the Fourier expansion of equation 27 is termi-

nated in practical calculations. Larger cutoff energies allow more accurate calcula-

tions but are significantly more expensive because the number of G vectors smaller

than Gc scales as Ec
3. Generally it is found that good convergence of the electronic

structure requires higher cutoff energies than needed for the convergence of the total

energy and lattice constants.

3.2 Supercells

An ideal surface is the plane between an infinite extent of bulk material and an

infinite region of vacuum and so periodicity is lost in a direction normal to the

surface (R⊥ → ∞). Therefore the Bloch expansion (equation 25) becomes contin-

uous (G⊥ → 0) and two concessions must be made to allow practical calculations.

Firstly, the system is made finite by using only a thin crystal slab. Secondly, pe-

riodic boundary conditions are reintroduced by constructing supercells which are

repeated over all space. Each supercell contains a crystal slab and a vacuum re-

gion (figure 5). Both the slab and the vacuum must be sufficiently deep to prevent

significant interaction between the two surfaces.

Ideally, the two surfaces of the slab are both relaxed about the middle section of

the supercell which is held fixed in bulk geometry. This means that any deviations

in the electronic structure from the bulk can be confidently assigned to the surfaces.

However this approach is expensive and, where the two opposite surfaces are iden-

tical, wasteful since the same thing is computed twice. The alternative is to just

relax one surface and freeze the other in bulk geometry. This is less computationally

demanding but the effects of the unphysical back-surface must be corrected for when

interpreting the electronic structure.
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Figure 5: Schematic illustration of the approximations necessary in modelling sur-
faces.(a)Ideal surface; (b)Supercell containing finite crystal slab; (c)Periodic repeti-
tion of supercell over all space

3.3 Pseudopotentials

The pseudopotential approximation exploits the fact most physical properties de-

pend predominantly on the valence electrons only. Even then, the component of

the valence wave function near the nucleus has very little effect on the bonding

properties of the valence electron. Within a radius rc of the ion core, the correct

potential veff is replaced by an new potential which combines the charge of the

nucleus and core electrons and the real wave functions are replaced by pseudo wave

functions. At rc the pseudopotential becomes identical with the real potential and

the pseudo-wave function (and its derivative) match the real the wave function.

By incorporating the core electrons into this new potential, wave functions for

fewer electrons have to be calculated. There is also a large reduction in cost of

representing valence wave functions near the nucleus. Representation in this region

is normally expensive because the wave functions necessarily have large curvature to

compensate for the large negative potential k and their form is further complicated

by the requirement of orthogonality with the core states. However, orthogonality

is no longer an issue within the pseudopotential model because there are no core

electrons. The curvature can be minimised by choosing a weak potential (figure 6).

kFor a stationary state, a decrease in the potential must be compensated for by an increase in
the kinetic energy, therefore requiring a greater curvature of the wave function.
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Figure 6: Schematic illustration of the potentials and wave functions for all-electron
(solid lines) and pseudopotential (dashed lines) calculations. The radius at which
wave functions (and their derivatives) match is denoted rc

An accurate pseudopotential will not affect the form of the wave function beyond

rc and will reproduce the same energy of the core Ecore as calculated by an all electron

treatment. The exact shape of the pseudopotential can be adjusted to give the

correct core energy Ecore. To ensure that the pseudo and real wave functions match

outside the core region, it is necessary and sufficient to adjust the pseudopotential

so that
∫ rc

0
dr |ψexact|

2 =
∫ rc

0
dr |ψpseudo|

2 (29)

Pseudopotentials constructed according to this ’norm-conservation’ criterion greatly

reduce the computational cost in many cases. However, calculations remain expen-

sive for atoms with tightly bound valence orbitals which have a substantial weight

within the core region. This is the case for example, for the first row elements and

transition metals. As a result even pseudo wave functions remain highly curved

and are therefore expensive to represent, requiring a large cutoff energy. However,

as suggested by Vanderbilt (17) in 1990, relaxing the norm-conservation condition

allows a less highly localised and therefore cheaper function (figure 7). Corrections

for this deviation from norm-conservation have to be made at a later stage in the
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calculation. Such ’ultrasoft’ potentials are now widespread in their application and

alongside the relentless growth of computational power have greatly increased the

size of calculation now possible.

r rc

ψ

ψ

o

soft

Figure 7: Two pseudo wave functions for a valence state highly peaked in the core;
norm-conserving (bold) and ultrasoft (dashed)

The treatment above transfers all interactions between core and valence electrons

to a local pseudopotential vpseudo and the contribution to the total energy from the

core region is given by,

Ecore =
∫

dr vpseudo(r)ρ(r) (30)

However, unlike the Kohn-Sham effective potential veff , the pseudopotential vpseudo

does contain any dependence on the valence charge density ρ. Therefore the assump-

tion implicit in equation 30 is that the energy of interaction between core and valence

states is linear in ρ. This introduces no serious errors provided the valence and core

charge densities are well separated in space. However, where there is significant

overlap between the two densities the linearisation, in particular of the exchange-

correlation energy, leads to large systematic errors. In such cases, non-linear core

corrections must be incorporated into the core energy (18) Ecore corrections
core by treating

vpseudo as a function of ρ,

Ecore corrections
core =

∫

dr vpseudo ((r), ρ(r)) ρ(r) (31)
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These core corrections allow the behaviour of the core to adjust to the form of the

valence wave functions and this improves the transferability of the pseudopotential

over a range of chemical environments.

3.4 Sampling the Brillouin-zone

In theory, to determine the total energy of a system, all occupied states must be

included. This would involve an integration over the Brillouin-zone and would be an

unfeasibly large calculation. However, for large systems where k is quasi-continuous,

the wave functions at proximate k-points are almost identical. Therefore it is possi-

ble to represent wave functions over a region of k-space by the function at a single

k-point. It was shown by Monkhorst and Pack (19) that the most efficient distribu-

tion of k for sampling are given by

kj = x1jb1 + x2jb2 + x3jb3 (32)

where bi are reciprocal lattice vectors and

xij =
li

nj

(33)

where li are the lengths of bi and nj is an integer determining the number of k-points

in the set. This array of k-points may be further reduced in size by exploiting the

point group symmetry of the Brillouin-zone and the sampling integral of a function

F (k) is replaced by the sum,

σ
P (nj)
j=1 ωjF (kj) (34)

where P (nj) are the symmetry dependent k-points within the irreducible wedge of

the Brillouin-zone and ωj are the ratios of the order of the point group of the wave

vectors kj, to that of the full point group symmetry.

3.5 The CASTEP code

In all the following, the CASTEP 4.2 (20) implementation of the plane wave pseu-

dopotential approach is used. Fast Fourier transforms are used to interconvert be-

tween real and reciprocal space. Minimisation is by a conjugate-gradient method

and electron-electron interactions are modelled with Perdew-Wang-91 functionals.

Atoms are relaxed according to the Hellman-Feynmann theory.
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Part III

Bulk Calculations

4 Nickel Manganese Antimonide

Figure 8: NiMnSb conventional unit cell - an fcc lattice with basis Ni:(0,0,0),
Mn:( 1

4
, 1
4
, 1
4
) and Sb:( 3

4
, 3
4
, 3
4
)

NiMnSb crystallises in the C1b structure and was modelled using the primitive

fcc unit cell and GGS functionals. Electronic wavefunctions were expanded up to a

kinetic energy cutoff of 300 eV and a Monkhorst-Pack mesh of 4 x 4 x 4 was used.

Ultrasoft pseudopotentials where used for all atoms and non-linear core corrections

were applied to Ni and Mn. Such treatment returns a conventional lattice constant

of 5.89 Å, within 1% of the experimental value of 5.97 Å. (5) The determination of

the electronic structure also agrees well with previous theoretical work. (1; 21) The

magnetic moment is calculated to be 4.00 µB per primitive unit cell l and the band

structure displays huge asymmetry between spin states, with an indirect band gap

of 0.54 eV for minority spin states and Fermi level crossing for majority spin states

(figure 10). For interest, the projection of the band structure along [100] between

high symmetry points in the surface Brillouin zone is also shown.

5 Indium Phosphide

Indium Phosphide crystallises in the zinc-blende structure and was modelled in the

primitive unit cell, sampled by a 6 x 6 x 6 k-point mesh. The 4d states were consid-

ered as valence electrons for In and ultrasoft pseudopotentials were used throughout.

lAn integer magnetic moment is a property of all half-metals, arising from the fact that all
minority spin bands lie wholly below the Fermi level.
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Figure 9: The surface Brillouin zone of an fcc lattice and its high symmetry points
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The plane wave expansion of electronic wave functions was up to a kinetic energy

cutoff of 310 eV. The lattice constant was accurately determined as 5.93 Å, within

1% of the experimental value of 5.87 Å (22). The form of the band structure is that

k
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Figure 11: The band structure of InP (left) and its projection along 〈100〉 (right) for
a (1x1) surface mesh. k-space is traversed between high symmetry points Γ = (0, 0, 0);
X = (0, 0, 0); W = (− 1
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expected for a zincblende unit cell and generally matches experimental results (23).

However, the calculated band structure shows a direct band gap of only 0.47 eV

in comparison with the experimental value of 1.27 eV (22). Poor representation



21

of band gaps is a common feature of density-functional theory which is strictly a

ground state method only. m However, our underestimate of the band gap is partic-

ularly large compared with previous studies (24) and is attributed to our use of the

theoretically most favourable lattice parameter instead of the experimental value

(figure 12).
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Conventional Lattice Parameter  (Angstrom)
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B
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Figure 12: Change in calculated band gap with lattice parameter used in calculation.
The increase in band gap with compression of the unit cell is the behaviour expected
from increased confinement of electrons.

mThis inaccuracy of DFT stems from an overestimation of the amount of screening experienced
by electrons in the conduction bands (by using a Exc which is fixed). In a metal, where there
are continuous bands at the Fermi level, there is a lot of screening and so this error is minimal.
However, the excited states of an insulator have minimal screening and so the error becomes very
apparent.
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Part IV

InP Surface Calculations

As discussed in section 3.2, an accurate model of the surface largely depends upon

the choice of appropriate supercell dimensions. However the InP {100} surfaces

which are terminated exclusively by either In or P, pose additional problems. For

a supercell slab terminated by one In surface and one P surface, electrons unavoid-

ably flow toward the more electronegative P surface. This ’charge sloshing’ effect

introduces an artificial electric field into the model which has unphysical effects on

the surfaces.

P

−

−

−

−

−

In

+

+

+

+

+

E artificial

Figure 13: The artificial electric field resulting from charge transfer between two
InP{100} surfaces of opposite polarity.

The asymmetry between the surfaces, and the necessarily finite sized supercell

slab, introduces a further problem. Each surface will have its own surface states

and associated Fermi-level. Within a calculation, the Fermi-level will try to equalise

across the whole structure and in doing so will bend the bulk bands. This coupling

between non-identical surface states is called Fermi-level pinning and is another

substantial non-physical effect that must be accounted for.

One very elegant method simultaneously reduces the effect of both of these com-

plications. The top surface of the slab is left to relax in the normal manner and the

back surface is adjusted to behave like an infinite extent of bulk material, so min-
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imising any unphysical effects. This technique of ’back surface termination’ most

commonly uses fractionally charged hydrogens to form perfect covalent bonds with

the surface. In doing so, partially-occupied dangling surface states are replaced with

fully occupied bonding orbitals and thus charge-sloshing is prevented. Furthermore,

the bonding and anti-bonding orbitals are energetically removed from the original

surface state and so coupling to the opposite surface is greatly reduced. n Unfortu-

nately the CASTEP 4.2 code we use is unable to handle fractional charges, and so

an alternative back surface termination must be developed.

In light of the subtleties involved in modelling InP {100}, we first model the

{110} surface to verify the accuracy of our methodology. The {110} surface of InP

forms identical surfaces on each side of the supercell slab and so there are no issues

with charge sloshing and Fermi level pinning.

6 The InP {110} Surface

The stable InP{110} (1x1) reconstruction is modelled in a supercell of height

22.8 Å containing six atomic InP{110} layers and a 12.1 Å region of vacuum. The

calculation is found to be converged for these supercell dimensions. The experimen-

tal lattice constant of 5.87 Å is used and GGA functionals are employed to model

electron-electron interactions. k-space integrations are replaced by a sum over ten

special points in the irreducible part of the surface Brillouin zone and single-particle

orbitals are expanded into plane waves up to a cutoff of 310 eV. The back surface

is frozen in bulk geometry and the top three atomic layers are allowed to relax.

At the surface P is found to move out from, and In towards, the bulk (figure 14).

The In-P bondlength at the surface is found to be contracted by 1% relative to the

bulk value, in good agreement with LEED experiments (25). The buckling angle is

found to be 27.3◦ compared with a previous theoretical prediction of 26.5◦ (26).

nAnother technique is to terminate both surfaces identically - this is very expensive computa-
tionally since symmetry must be conserved to prevent Fermi-level pinning and so both surfaces
must be relaxed.
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Figure 14: Side view of the InP {110} reconstruction. Yellow (grey) circles represent
P (In) atoms

7 The InP {100} Surface

The InP{100} surface displays a rich and varied chemistry that depends upon the

conditions under which it is made (27). Previous theoretical studies have presented a

comprehensive study of this surface (28; 29; 30) by comparing the stability of several

structural models of the {100} reconstructions. In comparing the favourability of

different reconstructions it is necessary to refer to the free energy of the surface.

7.1 Surface Thermodynamics

The total energy returned by a calculation depends on the number of atoms in the

supercell. Since this number varies with the reconstruction being modelled it is nec-

essary to remove this dependence in order to compare the energy of reconstruction.

We therefore construct a free energy FInP ,

FInP = EInP − nInµIn − nPµP (35)

where nx is the number of atoms with chemical potential µx and EInP is the calcu-

lated total energy. However, µIn and µP depend on the prevailing chemical environ-

ment and remain unknown. Nonetheless it must be that

µx ≤ µbulk
x (36)
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where µbulk
x is the chemical potential of bulk x. Furthermore µIn and µP must be

related to each other by

µIn + µP = µslab
InP (37)

where µslab
InP is the chemical potential of the supercell slab. We assume that within the

slab bulk behaviour dominates any surface effects, and so we may write µslab
InP = µbulk

InP

where µbulk
InP is simply the total energy for a bulk primitive unit cell calculation.

Equation 35 can now be written as the function of a single variable which we take

as µIn

FInP = ETotal
InP − (nIn − nP )µIn − nPµ

bulk
InP (38)

for which the boundary conditions are now

µbulk
InP − µbulk

P ≤ µIn ≤ µbulk
In (39)

or alternatively

∆fH(InP ) ≤ ∆µIn ≤ 0 (40)

where ∆µIn = µIn − µbulk
In and ∆fH(InP ) is the heat of formation of InP.

7.2 (2x4) reconstructions of InP{100}

In 1998 Schmidt and Bechstedt (28; 29) proposed eleven (2x4) reconstructions for

the InP{100} surface and used density-functional theory in the local-density approx-

imation to calculate the favourability of these reconstructions over the full range of

allowed chemical potentials (graph 15). In the following we attempt to reproduce

and expand upon these results for the four most stable, P terminated, (2x4) recon-

structions (shown in figure 18).

There are two main differences between our approach and that of Schmidt and

Bechstedt (hereafter referred to as SB). Firstly SB use fractionally charged hydro-

gens (Z=1.25) to terminate an In surface whereas we must introduce a novel back-

surface design to overcome the inability of the CASTEP code to handle fractional

charges (see section 7.2.2). Secondly, SB, whose work dates from 1998, followed the

common practice of their time and treated the 4d -states of In as frozen core states

within the pseudopotential so as to reduce the computational cost of calculation.
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Figure 15: The work of Schmidt and Bechstedt. Free energies of (2x4) reconstruc-
tions against ∆µIn. The four highlighted lines indicate the reconstruction models we
chose to study; Black: mixed-dimer; Red: top-P-dimer; Green: α; Blue: β2.

On the other hand the CASTEP 4.2 pseudopotential for In does not include the

4d -electrons but treats In as having 13 valence electrons. We perform calculations

using this more complete description of In (hereafter referred to as In-(13)) and also

repeat the calculations using a treatment similar to that of SB, with only 3 In va-

lence electrons (hereafter referred to as In-(3)). We show that the more accurate

13 electron description has only marginal effects on the results obtained.

7.2.1 Calculation parameters

Our density-functional calculations employ the generalised gradient approximation.

We model the (2x4) reconstructions using a supercell containing six atomic InP{100}

layers, a three layer back surface termination (discussed below) and a 6.5 Å region

of vacuum. We allow the top four atomic layers to relax whilst keeping frozen two

of the back InP{100} layers and most of the back surface (see below). Ultrasoft

pseudopotentials were employed throughout but very high energy cutoffs were used

nonetheless to allow comparison with future work on the electronic structure (sec-

tion 3.1). The In-(3) pseudopotential was constructed using the USPP code (31)

and included non-linear core corrections (section 3.3). It was found to behave well
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in models of bulk In and InP. A cutoff of 300 eV was used for this pseudopotential

whilst the In-(13) pseudopotential required a cutoff of 310 eV. Only one special

k-point was used in sampling the Brillouin zone, corresponding to a Monkhorst-

Pack mesh of 2 x 1 x 1. The theoretical equilibrium bulk lattice constant of InP is

found to vary little with the pseudopotential used, and we use the In-(13) value of

5.93 Å in all calculations.

7.2.2 Back-surface termination

We propose a new termination for the back In surface of our slab. For an ideal

back surface termination the relaxed top layer of the supercell slab would feel as

though surrounded by perfect bulk material on one side and vacuum on the other.

To achieve this, the back In surface must somehow be in a bulk-like state with a

full compliment of electrons. Bulk In atoms are four-fold coordinated and are five

electrons short of noble-gas electron configuration. Therefore, to achieve a closed-

shell configuration each In atom must gain 1.25 electrons per bond made. Thus,

on the In surface, we first form a layer consisting of equal quantities of Si and P,

then a layer of just Si and finally a layer of H atoms. All atoms are held in the

zincblende configuration except for the H which are relaxed. Allowing movement of

the H helps the back surface respond to small changes on the relaxed surface in the

same way that an infinite extent of bulk would. Every atom (except the H) forms

four two-electron bonds so the electron contribution to each bond from each atom

is

• Indium:- 0.75 electrons to four bonds

• Phosphorous:- 1.25 electrons to four bonds

• Inner Silicon:- 1.25 electrons to two bonds, 0.75 electrons to two bonds

• Outer Silicon:- 1.25 electrons to one bond, 0.75 electrons to one bond, 1.0

electrons to two bonds

• Hydrogen:- 1.0 electrons to one bond

To determine the accuracy of our termination, we compare slabs of differing

thickness which are terminated on both sides (see figure 17). The two calculations
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Figure 16: Our novel termination of the In back-surface and the contributions to
two-electron bonds. P atoms are coloured yellow, In atoms grey, Si atoms blue and
H atoms white

differ only in the insertion of an extra InP{100} layer into the larger slab, corre-

sponding to an extra four InP units. The supercell is 20.7 Å in height for both slabs

and the vacuum region has a height of 7.0 Å and 10 Å for large and small slabs re-

spectively. The In-(13) pseudopotential is used and all other calculation parameters

are as discussed above. It is found that the difference in total energy ∆E is almost

identical to four times the chemical potential of bulk InP µbulk
InP (table 1) where µbulk

InP

is taken to be -1747.2 eV (section 7.2.3). This means that the extra layer in the

large supercell is essentially in a bulk environment and therefore our termination

must accurately mimic an infinite extent of bulk. Furthermore, for ∆E to be lin-

ear in µInP must mean there is negligible interaction between the two surfaces and

we may therefore conclude the Fermi-level pinning effects are successfully removed.

On this ground, and the assumption that charge-sloshing is minimal, we use this

termination and continue with our calculations.

Figure 17: Small and large doubly terminated slabs used to estimate effectiveness
of back surface termination.
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Total Energy E (eV) ∆E 4.(µInP )

Small Slab -15529.6
-6989.3 -6988.8

Large Slab -22518.9

Table 1: The difference in total energy calculations for small and large slabs com-
pared with energy of insertion of 4 InP units.

7.2.3 The chemical potential range

As discussed in section 7.1 we can only compare the stability of surface reconstruc-

tions by considering their free-energies. Following the workings of this section we

need to determine the upper and lower bounds of the chemical potential of In (equa-

tions 39 and 40). Since the use of pseudopotentials does not allow absolute treatment

of energies (section 3.3) these boundary conditions must be computed for both the

In-(13) and In-(3) pseudopotentials individually.

The calculated chemical potentials and the details of their derivation are shown

in table 2. The total energy calculation for In and InP primitive unit cells gives

µbulk
In and µbulk

InP but the calculation of µbulk
P is non-trivial due to the many amorphous

and crystalline forms of phosphorus. The most stable allotrope is black phosphorus

whilst the most common is white phosphorus. Due to the very large unit cells of

other polymorphs, black phosphorus in its cubic form is chosen for calculations.

However this approach yields

−0.4 eV ≤ ∆µIn ≤ 0 eV (41)

which is an unfeasibly small range of thermodynamically allowed values for a stable

material such as InP. This small range corresponds to using a value of µbulk
P which

is too small because P has been modelled in a structure which is too stable.

Unit cell Monkhurst-Pack mesh µ (eV)

µbulk
In

primitive tetragonal
5 x 5 x 3

-1565.9 (In-(13))
a = b = 3.25 Å, c = 4.95 Å (32) -399.6 (In-(3))

µbulk
InP

primitive zincblende
6 x 6 x 6

-1747.2 (In-(13))
a = 5.93 Å -580.9 (In-(3))

µbulk
P

Black-P
8 x 8 x 8 -180.9primitive cubic

a = 2.38 Å (32)

Table 2: The calculated chemical potentials of In, InP and P

However, although it is preferable to determine the upper and lower bounds on
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∆µIn using only first-principle results, it is possible to avoid the complications of

working with µbulk
P by referring instead to the experimental heat of formation of InP

∆fH(InP ) as in equation 40.o. Taking ∆Hf(InP ) = -0.92 eV (22) gives

−0.92 eV ≤ ∆µIn ≤ 0 eV (42)

or

−1566.8 eV ≤ µIn ≤ −1565.9 eV (43)

for In-(13) and

−400.5 eV ≤ µIn ≤ −399.6 eV (44)

for In-(3).

7.2.4 Results

From the work of SB the four most stable surface reconstructions were chosen (fig-

ure 18). Crude estimates of these surface geometries were entered into our model

(section 7.2.1) and equilibrium structures were found by the CASTEP 4.2 code. Cal-

culations were run for both the In-(13) and In-(3) pseudopotentials and equilibrium

geometries are shown in table 3.

To compare energies of surface reconstructions we follow the working of sec-

tion 7.1 and use the free energy FInP ,

FInP = EInP − µIn (nIn − nP ) − nPµ
bulk
InP (45)

The values of FInP over the allowed range of µIn are shown in table 4 and plotted

in graph 19.

Free energy plots for the two pseudopotentials agree well with those of SB

(graph 15) as do our equilibrium geometries (table 3). Our results also show a certain

∆µIn where all four reconstructions become very similar in energy. The variation

in ∆µIn at which this happens does not necessarily correspond to any substantial

error since it is the coincidence of very shallow lines. It may seem strange that all

o∆fH(InP ) is the enthalpy change from elements in their standard state, which for phosphorus
is its white allotrope. From this state ∆fH(Black−P ) = −0.41 eV and so we get the much more
likely allowed range of −0.81 eV ≤ ∆µIn ≤ 0 eV
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InP{001}-(2x4) In-(13) In-(13) Literature

β2

P-P dimer (1st layer) 2.18 2.19 2.21
P-P dimer (3rd layer) 2.20 2.20 2.25
d12 ⊥ 1.53 1.53 1.55

α

P-P dimer - 2.18 2.22
d12 ⊥ - 1.49 1.44

Mixed-dimer
In-P dimer 2.60 2.61 2.44
Dimer buckling 0.37 0.35 0.46
d12 ⊥ 1.07 1.14 1.08

Top-P-dimer
P-P dimer 2.18 2.18 2.22
d12 ⊥ 1.55 1.54 1.50

Table 3: Equilibrium geometries (Å) of InP{100}(2x4) reconstructions. Calculated
for In-(13) and In-(3) and compared with the results of Schmidt and Bechstedt. The
In-(13) calculation for the α reconstruction remains unfinished.

Pseudopotential E(eV) µIn (eV) F(eV)

β2

In-(13) -5043.25
-1566.8 -194.25
-1565.9 -194.025

In-(3) -1836.01
-400.5 -193.438
-399.6 -193.213

α

In-(13) -5434.75
-1566.8 -194.05
-1565.9 -194.05

In-(3) -1935.98
-400.5 -193.275
-399.6 -193.275

Mixed-dimer
In-(13) -5562.63

-1566.8 -193.613
-1565.9 -194.063

In-(3) -1918.04
-400.5 -192.925
-399.6 -193.375

Top-P-dimer
In-(13) -5389.49

-1566.8 -193.813
-1565.9 -194.038

In-(3) -1890.68
-400.5 -193.075
-399.6 -193.3

Table 4: Total and free energies of surface reconstructions for In-(13) and In-(3)
pseudopotentials, normalised to (1x1) surface mesh
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Figure 18: Side-top and top views of equilibrium geometry of InP{100}(2x4) recon-
structions. Yellow (grey) circles represent P (In) atoms.
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Figure 19: The relative free-energy of reconstruction (relative to α reconstruction)
against ∆µIn for In-(3) and In-(13) pseudopotentials. The thermodynamically al-
lowed range, ∆Hf (InP ) ≤ ∆µIn ≤ 0, is indicated by grey lines.



34

these lines meet at a single point but in the context of many more reconstruction

models (graph 15) this is likely to just be coincidental.

The similarity of the results from the In-(3) and In-(3) pseudopotentials suggest

that only in the In-rich environment (large ∆µIn), where the four reconstructions

become comparable in energy, is it necessary to use the In-(3) pseudopotential. In

the P-rich environment where the energy separation between structures is large, In-

(3) could confidently be applied. This is of great computational use since it could

greatly reduce computational cost in future calculations. However, this work does

not exclude the possibility of other reconstruction structures that may complicate

the behaviour of InP{100} in the P-rich environment.
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Part V

Conclusion

A model has been developed for describing the InP{100} surface within the CASTEP

implementation of density-functional theory. This approach is based on accurate

calculations for bulk InP and NiMnSb and for the InP{110} surface. Applying

this model to certain (2x4) reconstructions of the InP{100} surface reproduces well

existing literature results. A novel back surface termination is demonstrated to be

work. It is shown that neglecting the 4d -electrons of In does not necessarily produce

great errors and certain calculations could be performed with the cheaper 3 electron

treatment of In.

Further theoretical work will involve modelling a greater range of InP{100} re-

constructions and building NiMnSb{100} layers onto the most stable of these. Ex-

perimental work at Warwick aims to fabricate the NiMnSb / InP {100} interface by

molecular beam epitaxy.
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